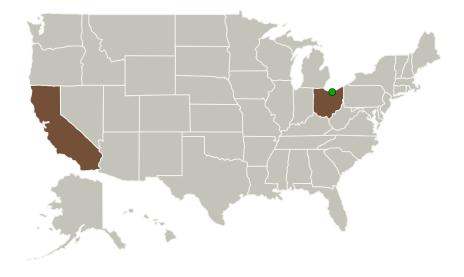
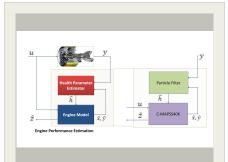
### Turbine Engine Performance Estimation Using Particle Filters, Phase I





Completed Technology Project (2013 - 2013)

#### **Project Introduction**

Development of a nonlinear particle filter for engine performance is proposed. The approach employs NASA high-fidelity C-MAPSS40K engine model as the central element, and addresses the issue of lack of observability of some of the engine health parameters in previous Kalman filter formulations. Proposed approach does not require linearity of the dynamics or Gaussian noise assumptions for satisfactory operation. The feasibility of real-time implementation of the proposed approach will be demonstrated using commercial, off-the-shelf General Purpose Graphical Processing Units. Phase I feasibility demonstration will show that the particle filter formulation of the engine performance monitoring system can overcome the limitations of previously employed approaches. Phase II research will develop a prototype implementation for hardware-in-loop simulations and eventual flight test.

#### **Primary U.S. Work Locations and Key Partners**





Turbine Engine Performance Estimation using Particle Filters

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           | 2 |
| Images                        | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

# Turbine Engine Performance Estimation Using Particle Filters, Phase I



Completed Technology Project (2013 - 2013)

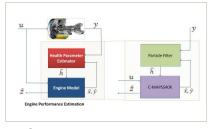
| Organizations<br>Performing Work | Role                       | Туре                                                 | Location                 |
|----------------------------------|----------------------------|------------------------------------------------------|--------------------------|
| Optimal<br>Synthesis, Inc.       | Lead<br>Organization       | Industry<br>Small<br>Disadvantaged<br>Business (SDB) | Los Altos,<br>California |
| Glenn Research<br>Center(GRC)    | Supporting<br>Organization | NASA Center                                          | Cleveland,<br>Ohio       |

| Primary U.S. Work Locations |      |
|-----------------------------|------|
| California                  | Ohio |

#### **Project Transitions**

O I

May 2013: Project Start




November 2013: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/137466)

#### **Images**



#### **Project Image**

Turbine Engine Performance Estimation using Particle Filters (https://techport.nasa.gov/imag e/128903)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Optimal Synthesis, Inc.

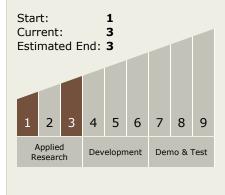
#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

# **Project Management**

#### **Program Director:**

Jason L Kessler


#### **Program Manager:**

Carlos Torrez

#### **Principal Investigator:**

Bong-jun Yang

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# Turbine Engine Performance Estimation Using Particle Filters, Phase I



Completed Technology Project (2013 - 2013)

# **Technology Areas**

#### **Primary:**

- TX11 Software, Modeling, Simulation, and Information Processing
  - ☐ TX11.4 Information Processing
    - ☐ TX11.4.2 Intelligent Data Understanding

# **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

